
Net-Centric Implementation Framework

Part 1: Overview

Part 2: ASD(NII) Checklist Guidance

Part 3: Migration Guidance

Part 4: Node Guidance

Part 5: Developer Guidance

Part 6: Contracting Guidance for
Acquisition

V 2.0

30 April 2007

Approved for public release; distribution is unlimited.

Net-Centric Enterprise Solutions for Interoperability (NESI) is
a collaborative activity of the USN Program Executive Office
for Command, Control, Communications, Computers and
Intelligence (PEO C4I); the USAF Electronic Systems Center
(ESC); and the Defense Information Systems Agency (DISA).

NESI Part 3, v2.0, 30 April 2007 page i

Table of Contents

1 NESI Implementation.. 1
1.1 References ... 1
1.2 Overview... 2
1.3 Releasability statement .. 3
1.4 Vendor Neutrality .. 3
1.5 Disclaimer ... 3
1.6 Contributions and Comments ... 3
1.7 Collaboration Site ... 3

2 Introduction... 4
2.1 Audience... 4

3 Migrating to a Net-Centric Warfare Environment .. 5
3.1 ASD(NII)/DoD CIO Categories ... 5

3.1.1 Non-Compliant (Retire).. 6
3.1.2 Legacy Being Sustained (Retain) .. 6
3.1.3 Legacy Being Transformed (Refresh) ... 6
3.1.4 New Start / In Development... 6

3.2 NESI Migration Levels .. 6

4 Selecting a Migration Level ... 8
4.1 Assessing Risk ... 8

4.1.1 Client and Presentation Tiers .. 9
4.1.2 Middle Tier ... 9
4.1.3 Data Tier .. 9
4.1.4 Multi-User Applications.. 9
4.1.5 Cross-Domain Security (CDS)... 9

4.2 Assessing Scope .. 10
4.3 Level 1: Minimum Upgrade... 11

4.3.1 Overarching ... 11
4.3.2 Client and Presentation Tier .. 12
4.3.3 Middle Tier ... 13
4.3.4 Data Tier .. 14

4.4 Level 2: Mid-Level Upgrade.. 14
4.4.1 Overarching ... 15
4.4.2 Client and Presentation Tier .. 16
4.4.3 Middle Tier ... 16
4.4.4 Data Tier .. 17

4.5 Level 3: Net-Centric Upgrade ... 18
4.5.1 Overarching ... 19
4.5.2 Client and Presentation Tier .. 19
4.5.3 Middle Tier ... 20
4.5.4 Data Tier .. 20

4.6 Level 4: Full Net-Centric Integration ... 20
4.6.1 Overarching ... 21

5 Migrating COE Systems and Applications... 23
5.1 Selecting an Approach ... 23
5.2 Analyzing COE Capabilities.. 23
5.3 Decision Tree.. 24
5.4 Examples of Mixed COE/Non-COE Systems... 25
5.5 Migrating Systems with Basic COE Dependency... 25
5.6 Migrating Systems with COE Component Dependencies.. 26

5.6.1 COE Alerts Dependency ... 26
5.6.2 COE APM/CDS Dependency .. 26

NESI Part 3, v2.0, 30 April 2007 page ii

5.6.3 COE JMTK Dependency ... 26
5.6.4 COE CMP Dependency... 26
5.6.5 COE ICSF Dependency .. 26

5.7 Migrating COE Components Using a Bridge Approach ... 27

6 Mapping Maintenance Actions to Enterprise Technology Objectives.. 29

NESI Part 3, v2.0, 30 April 2007 page iii

(This page is intentionally blank.)

NESI Part 3, v2.0, 30 April 2007 page 1

1 NESI Implementation
NESI Part 3: Migration Guidance is the third of six parts of the NESI Net-Centric
Implementation Document Set. Part 3 guidance is intended for the program managers and DoD
contractors of existing programs. These programs use pre-planned product improvement or
maintenance funds to incorporate net-centric characteristics. This guidance presents a strategy to
migrate deployed applications to the net-centric paradigm during the maintenance phase. It
describes how to implement a phased software migration strategy to deliver net-centric capability
and to fulfill current contractual and program maintenance obligations.

Section 1 of Part 3 contains brief NESI background information. For more introductory
information, see the first part of this document set, NESI Part 1: Overview.

Note: Part 3 is undergoing a comprehensive revision intended for the next release of
the NESI Implementation document set.

1.1 References

(a) DoD Directive 5000.1, The Defense Acquisition System, 24 November 2003.

(b) DoD Instruction 5000.2, Operation of the Defense Acquisition System, 12 May 2003.

(c) DoD Directive 8100.1, Global Information Grid (GIG) Overarching Policy, 21 November
2003.

(d) DoD Directive 4630.5, Interoperability and Supportability of Information Technology (IT)
and National Security Systems (NSS), 05 May 2004.

(e) DoD Instruction 4630.8, Procedures for Interoperability and Supportability of Information
Technology (IT) and National Security Systems (NSS), 30 June 2004.

(f) DoD Directive 5101.7, DoD Executive Agent for Information Technology Standards, 21 May
2004.

(g) DoD Global Information Grid (GIG) Architecture, Version 2.0, August 2003.

(h) DoD Architecture Framework (DoDAF), Version 1.0, 9 February 2004.

(i) DoD Net-Centric Data Strategy, DoD Chief Information Officer, 9 May 2003.

(j) CJCSI 3170.01E, Joint Capabilities Integration and Development System, 11 May 2005.

(k) CJCSM 3170.01B, Operation of the Joint Capabilities Integration and Development System,
11 May 2005.

(l) CJCSI 6212.01D, Interoperability and Supportability of Information Technology and
National Security Systems, 8 March 2006.

(m) Net-Centric Operations and Warfare Reference Model (NCOW RM), Version 1.1 (Draft), 8
November 2004.

(n) Net-Centric Checklist, V2.1.3, Office of the Assistant Secretary of Defense for Networks and
Information Integration/Department of Defense Chief Information Officer, 12 May 2004.

NESI Part 3, v2.0, 30 April 2007 page 2

(o) A Modular Open Systems Approach (MOSA) to Acquisition, Version 2.0, September 2004.

(p) DoD IT Standards Registry (DISR), http://disronline.disa.mil.

(q) Net-Centric Attributes List, Office of the Assistant Secretary of Defense for Networks and
Information Integration/Department of Defense Chief Information Officer, June 2004.

(r) Global Information Grid (GIG) Key Interface Profiles (KIPs) Framework (DRAFT), Version
0.95, 7 October 2005.

1.2 Overview

Net-Centric Enterprise Solutions for Interoperability (NESI) provides, for all phases of the
acquisition of net-centric solutions, actionable guidance that meets DoD Network-Centric
Warfare goals. The guidance in NESI is derived from the higher level, more abstract concepts
provided in various directives, policies and mandates such as the Net-Centric Operations and
Warfare Reference Model (NCOW RM) and the ASD(NII) Net-Centric Checklist, references (m)
and (n), respectively. As currently structured, NESI guidance is captured in documents covering
architecture, design and implementation; a compliance checklist; and a collaboration
environment that includes a repository of guidance statements and code examples.

More specifically, NESI is a body of architectural and engineering knowledge that guides the
design, implementation, maintenance, evolution, and use of the Information Technology (IT)
portion of net-centric solutions for military application. NESI provides specific technical
recommendations that a DoD organization can use as references. Stated another way, NESI can
be thought of as a reference set of compliant instantiations of these directives.

NESI is derived from both a studied examination of enterprise-level needs and more importantly
from the collective practical experience of recent and on-going program-level implementations.
It is based on today’s technologies and probable near-term technology developments. It describes
the practical experience of system developers within the context of a minimal top-down technical
framework. Most, if not all, of the guidance in NESI is in line with commercial best practice in
the area of enterprise computing.

NESI applies to all phases of the acquisition process as defined in references (a) and (b) and
applies to both new and legacy programs. NESI provides explicit counsel for building in net-
centricity from the ground up and for migrating legacy systems to greater degrees of net-
centricity.

NESI subsumes a number of references and directives; in particular, the Air Force C2 Enterprise
Technical Reference Architecture (C2ERA)1 and the Navy Reusable Applications Integration and
Development Standards (RAPIDS).2 Initial authority for NESI is per the Memorandum of
Agreement between Commander, Space and Naval Warfare Systems Command (SPAWAR),
Navy PEO C4I & Space and the United States Air Force Electronic Systems Center, dated 22
December 2003, Subject: Cooperation Agreement for Net-Centric Solutions for Interoperability

1 Air Force C2 Enterprise Technical Reference Architecture, v3.0-14, 1 December 2003.
2 RAPIDS Reusable Application Integration and Development Standards, Navy PEO C4I & Space, December 2003
(DRAFT V1.5).

http://disronline.disa.mil

NESI Part 3, v2.0, 30 April 2007 page 3

(NESI). The Defense Information Systems Agency (DISA) formally joined the NESI effort in
2006.

1.3 Releasability statement

This document has been cleared for public release by competent authority in accordance with
DoD Directive 5230.9 and is granted Distribution Statement A: Approved for public release;
distribution is unlimited. Obtain electronic copies of this document at
http://nesipublic.spawar.navy.mil.

1.4 Vendor Neutrality

The NESI documentation sometimes refers to specific vendors and their products in the context
of examples and lists. However, NESI is vendor-neutral. Mentioning a vendor or product is not
intended as an endorsement, nor is a lack of mention intended as a lack of endorsement.

Code examples typically use open-source products since NESI is built on the open-source
philosophy. NESI accepts inputs from multiple sources so the examples tend to reflect whatever
tools the contributor was using or knew best. However, the products described are not
necessarily the best choice for every circumstance. Users are encouraged to analyze specific
project requirements and choose tools accordingly. There is no need to obtain, or ask contractors
to obtain, the open-source tools that appear as examples in this guide. Similarly, any lists of
products or vendors are intended only as references or starting points, and not as a list of
recommended or mandated options.

1.5 Disclaimer

Every effort has been made to make NESI documentation as complete and accurate as possible.
Even with frequent updates, this documentation may not always immediately reflect the latest
technology or guidance. Also, references and links to external material are as accurate as
possible; however, they are subject to change or may have additional access requirements such
as Public Key Infrastructure (PKI), Common Access Card (CAC) use, and user accounts.

1.6 Contributions and Comments

NESI is an open-source project that will involve the entire development community. Anyone is
welcome to contribute comments, corrections, or relevant knowledge to the guides via the
Change Request tab on the NESI Public site, http://nesipublic.spawar.navy.mil, or via the
following email address: nesi@spawar.navy.mil.

1.7 Collaboration Site

The Navy has established a collaboration site to support NESI community interaction. It is
located at https://nesi.spawar.navy.mil (user registration required). Use this site for collaborative
software development across distributed teams.

https://nesi.spawar.navy.mil/
http://nesipublic.spawar.navy.mil
https://nesi.spawar.navy.mil/

NESI Part 3, v2.0, 30 April 2007 page 4

2 Introduction
Moving to a net-centric environment is a high priority of DoD leadership. NESI is taking a lead
role in executing that vision. However, there are few or no additional dollars available for net-
centricity. This requires using current resources more effectively. To transition successfully to a
net-centric environment, programs need guidance that provides clear objectives and suggests
improvements that can occur in conjunction with routine maintenance activity.

NESI advocates an incremental migration strategy to move applications towards this goal.
Programs and contracts should use existing maintenance dollars to migrate applications to a
system capable of Network Centric Warfare (NCW) while meeting current maintenance
obligations. This approach leverages the DoD investment in deployed systems and training.

NESI Part 3: Migration Guidance (this document) contains the following guidance sections:

 Section 3, Migrating to a Net-Centric Warfare Environment: defines incremental
migration strategies tailored to the type of application.

 Section 4, Selecting a Migration Level: provides tools for assessing the risk and scope of
migration, identifies three levels of upgrade, then discusses how to implement upgrades
in each tier.

 Section 5, Migrating COE Systems and Applications: recommends approaches to
migrating COE-based systems to a net-centric infrastructure.

 Section 6, Mapping Maintenance Actions to Enterprise Technology Objectives: maps the
maintenance actions described in 4ection 4 to the net-centric operational attributes
described in NESI Part 1: Overview, such as capability on demand.

2.1 Audience

The intended audience for this document includes the following:

 Program managers

 Deputy program managers

 Contracting officers

 Chief engineers

 Contractor personnel

NESI Part 3, v2.0, 30 April 2007 page 5

3 Migrating to a Net-Centric Warfare
Environment

The technical migration strategy outlined in this document is built around a planned migration of
functionality out of the current stovepipe systems and Common Operating Environment (COE)
segments into a set of componentized applications, N-tier layered systems, separate node-based
infrastructures, and new services. This migration strategy is based on fiscal limitations and the
need to continue supporting current applications.3

Application functionality will be duplicated or wrapped, not necessarily removed, from current
systems until all clients are using services instead of legacy stovepipe systems. Not all upgrades
need to occur at the same time. Developers should identify and refactor application logic during
planned maintenance activities. When application code is updated in a specific area, take the
opportunity to add the appropriate net-centric environment upgrades.

This concurrent strategy entails insulating the structure of each system or application to enable
proceeding independently of other enterprise systems and applications. NESI Part 5: Developer
Guidance discusses insulation techniques such as multi-tier architectures, connectors, wrappers,
adaptors, facades, proxies, bridges, and abstract interface classes.

In many cases, incremental migration is more efficient and carries less risk than a direct cutover.
The benefits include the following:

 Staying within the current acquisition frameworks

 Leveraging common development opportunities

 Providing reasonable incentive for participation

 Offering short-term, tangible results that do not disrupt ongoing software development
efforts

 Reducing cost as opposed to an expensive stop and re-engineer strategy

The main risk of this approach is that people may try to apply a one-size-fits-all strategy to all
programs. This section discusses how to mitigate this risk by tailoring the migration to different
types of programs.4 To that end, NESI defines “migration levels” that identify different levels of
adaptation and maps them to the NESI strategic goals.

3.1 ASD(NII)/DoD CIO Categories

Reference (n) assigns programs to net-centric categories. The following sections identify each
category and list relevant documentation.

3 This initial policy document focuses on software-related systems. More detailed network and transport level
guidance will follow.
4 Real-time and closed-loop systems will implement a separate set of guidance (e.g., Open Architecture) that may
not share all of the net-centric attributes.

NESI Part 3, v2.0, 30 April 2007 page 6

The effort required to implement net-centricity in an application varies based on the target
application. The spectrum ranges from already Web-enabled, multi-tiered, service-based
applications to single-tiered, proprietary, closed stovepipes. In some cases, developers may wrap
the entire application into one or several high-level coarse-grained interfaces. Then, the system
components can migrate during subsequent iterations.

3.1.1 Non-Compliant (Retire)
Programs that do not exhibit net-centric capabilities and are not essential for continued
operations or business processes will be guided towards termination.

3.1.2 Legacy Being Sustained (Retain)
Current programs that do not yet exhibit net-centric capabilities and are not planned for
transformation, but are essential for current operations. If minimal cost growth is obtainable,
programs in sustainment mode should attempt to meet the minimum criteria. This document
applies to some programs in this category, on a case-by-case basis.

3.1.3 Legacy Being Transformed (Refresh)
Current programs that have an established plan to comply with net-centric capabilities and DoD
domain requirements are in this group. This document specifically addresses programs in this
category.

The matrix in Section 6, Mapping Maintenance Actions to Enterprise Technology Objectives,
explains how to make net-centric enhancements that are of the same scope as typical
maintenance or fix actions. The objective is to stretch existing maintenance dollars to build net-
centric capabilities as well. If more money is available, programs can achieve higher objectives.

3.1.4 New Start / In Development
Programs that are born net-centric are in this group. They meet NCW requirements and are fully
compliant with DoD net-centric models.

3.2 NESI Migration Levels

The table below illustrates the relationship of the ASD(NII)/DoD CIO categories to the NESI
technical migration levels.

Table 1 – Correspondence between Checklist and NESI Levels

ASD(NII)/DoD CIO Checklist Categories NESI Migration Levels

Non-Compliant (Retire) Level 0 (As-Is) – Point to Point Legacy Interfaces

Legacy Being Sustained (Retain) Level 1 – Migration to N-tier Structure

Level 2 – Access to Legacy Data and Applications

Legacy Being Transformed (Refresh) Level 3 – Legacy Applications Transformed

New Start/In Development Level 4 – Fully Integrated Applications and Databases

NESI Part 3, v2.0, 30 April 2007 page 7

The following figure depicts these levels of migration. This document discusses the technical
activities involved in migrating to Levels 1, 2, and 3. NESI Part 2: ASD(NII) Checklist Guidance
presents the criteria for Level 4.

Provide Flexibility through Multiple Levels of Migration

Level 3 Level 4
Level 1

Level 2

L
eg

ac
y

A
p

p

L
eg

ac
y

S
to

re
L

eg
ac

y
A

p
p

Legacy
Viewer

Web Enabled
URL

Resource
Adapter

Resource
Adapter

N
o

d
e

P
la

tf
o

rm

R
e-

fa
ct

or
ed

N
-T

ie
r

A
p

p

L
eg

ac
y

S
to

re

Web
Viewer

Resource
Adapter

N
o

d
e

P
la

tf
o

rm

N
ew

 S
to

re
N

at
iv

e
A

p
p

Web
Viewer

N
o

d
e

P
la

tf
o

rm

As-Is

G
IG

 a
n

d
 N

C
E

S

G
IG

 a
n

d
 N

C
E

S

G
IG

 a
n

d
 N

C
E

S

Provide Flexibility through Multiple Levels of Migration

Level 3 Level 4
Level 1

Level 2

L
eg

ac
y

A
p

p

L
eg

ac
y

S
to

re
L

eg
ac

y
A

p
p

Legacy
Viewer

L
eg

ac
y

S
to

re
L

eg
ac

y
S

to
re

L
eg

ac
y

S
to

re
L

eg
ac

y
A

p
p

L
eg

ac
y

A
p

p
L

eg
ac

y
A

p
p

Legacy
Viewer

Web Enabled
URL

Resource
Adapter

Resource
Adapter

Resource
Adapter

Resource
Adapter

N
o

d
e

P
la

tf
o

rm

R
e-

fa
ct

or
ed

N
-T

ie
r

A
p

p

L
eg

ac
y

S
to

re

Web
Viewer

Resource
Adapter

Resource
Adapter

N
o

d
e

P
la

tf
o

rm

N
ew

 S
to

re
N

at
iv

e
A

p
p

Web
Viewer

N
o

d
e

P
la

tf
o

rm

N
ew

 S
to

re
N

at
iv

e
A

p
p

Web
Viewer

N
o

d
e

P
la

tf
o

rm

As-Is

G
IG

 a
n

d
 N

C
E

S
G

IG
 a

n
d

 N
C

E
S

G
IG

 a
n

d
 N

C
E

S

G
IG

 a
n

d
 N

C
E

S
G

IG
 a

n
d

 N
C

E
S

G
IG

 a
n

d
 N

C
E

S

G
IG

 a
n

d
 N

C
E

S
G

IG
 a

n
d

 N
C

E
S

G
IG

 a
n

d
 N

C
E

S

Figure 1 – Levels of Migration

NESI Part 3, v2.0, 30 April 2007 page 8

4 Selecting a Migration Level
This section identifies several application migration levels. Each level lists technical net-centric
upgrade actions for each of the operational attributes listed in NESI Part 1: Net-Centric
Overview. These upgrades enable programs to implement the technical and application attributes
they need to become net-centric and qualify for the ASD(NII)/DoD CIO “Refresh” category.

As one finds when buying a car, packaged options are more economical than random selections
of options. We believe that this will also be true for systems migrating to net-centricity. The
levels discussed here organize upgrades into logical groups and consider effort, complexity, and
cost in a consistent manner.

NESI identifies four major levels of upgrades that range from minimal changes to a full net-
centric integration. Program managers select the appropriate level based on risk and resource
costs. See Sections 4.1, Assessing Risk and 4.2, Assessing Scope, before identifying a migration
level..

 Level 1, Minimum Upgrade. Factor the application into tiers, modularize application
code into components, and create public Application Programming Interfaces (APIs).

 Level 2, Mid-Level Upgrade. Using adapters, connect the application through its public
APIs to the Node Platform Infrastructure (NPI).

 Level 3, Net-Centric Upgrade. Migrate application code to the Node Platform
Infrastructure and prepare the application for the net-centric environment (namespaces,
metadata, XML).

 Level 4, Full Net-Centric Integration. Enable legacy applications to function more fully
in the net-centric environment. These enhancements are typically more expensive and
time-consuming.

The levels are not compliance levels, and programs will not be judged against them. Moreover,
program managers are free to select upgrades from multiple levels to suit the needs of their
applications and the availability of resources.

It is essential to select upgrades that support structural insulation. This approach allows each
modification to proceed independently. Carefully consider the best approach to applications that
cannot be modified during other maintenance activities.

4.1 Assessing Risk

The NESI technical approach is based on migrating applications to an N-tier architecture. The
following list describes some risks associated with net-centric upgrades. Consider these when
choosing the upgrade level. Applications that migrate from an environment with a single or
limited number of users, or that migrate into a cross-domain security environment, require
additional evaluation.

NESI Part 3, v2.0, 30 April 2007 page 9

4.1.1 Client and Presentation Tiers
These upgrades carry the lowest risk and the highest return, because they make the application
more net-centric without affecting the operation of the application.

Depending on the legacy application architecture, it may be more appropriate to merge the client
and presentation tiers. This guidance applies in both cases.

4.1.2 Middle Tier
These upgrades entail higher risk for applications that are not component-based or not structured
with well-defined interfaces. Mitigate the risk by targeting smaller areas of the middle tier rather
than the full application.

4.1.3 Data Tier
These upgrades also entail higher risk. The risk is especially high for applications that lack well-
defined interfaces, are not insulated from the database or data stream, or store all the business
logic in the database. Mitigate risk by using a combination of approaches such as switching to
Open Database Connectivity (ODBC) or Java Database Connectivity (JDBC), removing detailed
business logic and algorithms from the data tier, and targeting small areas rather than reworking
the entire application at once.

There are multiple technologies for exposing data to the enterprise. Providing a data-tier-service
API involves significant costs and risks, which careful analysis and design can mitigate. Make
sure to address data modeling, API construction, data element granularity, and XML format
conversion. For example, share information between nodes via middle-tier services and not via
SQL over the network.

As an example, for database applications, do not start by pulling all the business logic out of the
database. Instead, leave the stored procedures in place and migrate to an open-standards
abstraction layer such as ODBC/JDBC. In subsequent iterations, separate detailed business logic
and algorithms from the database. Database Management System (DBMS) stored procedures,
triggers and constraint checks are the optimal approach for inserting data, manipulating data,
cascading deletions, enforcing constraints, and referential integrity.

For data stream applications, try implementing an open-standards wrapper abstraction layer to
cover a subset of protocols. Extend the abstraction layer in subsequent iterations.

4.1.4 Multi-User Applications
These upgrades entail significant risk. Scaling a single-user application to be net-accessible and
consequently multi-user is quite complex and requires careful planning. Some of the issues that
need to be addressed are concurrency, locking, priority, transactions, state transitions, failover,
security, and logging.

4.1.5 Cross-Domain Security (CDS)
Adopting CDS is often the highest risk area, since CDS designs and implementation are aimed at
complex, multinational information sharing. Future development efforts should determine
whether to incorporate a CDS design or use enterprise CDS services. Since it is very difficult to
introduce CDS into a system during the maintenance phase, the CDS options have been moved

NESI Part 3, v2.0, 30 April 2007 page 10

to beyond Level 3. See NESI Part 2: ASD(NII) Checklist Guidance for instructions on new
development.

Current projects may be able to make use of a trusted CDS data service during maintenance
upgrades, depending on the architecture. This could provide users with a single common data
source and could enable other applications running at different security levels to use the data.

For projects that are looking at major restructuring, use CDS enterprise services as they are
developed and deployed.

4.2 Assessing Scope

The Scope Assessment Matrix, below, correlates maintenance actions with net-centric upgrade
actions. The matrix provides program managers with a rule-of-thumb guide for selecting net-
centric upgrades based on the resources available for maintenance actions.

The matrix groups maintenance actions by resources available. It groups net-centric upgrades
into the levels discussed above, based on risk and resource costs. For example, applications that
only have the resources to perform fixes to Software Trouble Reports (STRs) would generally
focus on Level 1 net-centric upgrades, achieving minimal net-centricity.

Table 2 – Scope Assessment Matrix

Maintenance Actions Resources
Available

Level 1,
Minimum
Upgrade

Level 2,
Mid-Level
Upgrade

Level 3,
Net-Centric
Upgrade

Software Trouble Reports
(STRs) only

$ X

New functionality and STRs $$ X X X (partial)

Application restructuring;
major upgrades

$$$ X X X

These development effort levels do not address DoD PKI Policy requirements.5 Individual
programs are responsible for that compliance.

Early net-centric upgrades will probably implement upgrade options from multiple levels,
depending on the degree of net-centricity, robustness, and maturity of an application. In general,
though, applications will start with a basic set of upgrades and evolve toward a full-featured, net-
centric environment.6

Once STRs and Change Packages (CP) are prioritized from Configuration Control Board (CCB)
reviews, use the table above and the maintenance options listed in the levels below to determine
the effect of the maintenance actions proposed for the upgrade cycle. Once determined, use the

5 See Department of Defense Instruction 8520.2, Public Key Infrastructure (PKI) and Public Key (PK) Enabling, 1
April 2004.
6 It is not necessary to complete all upgrades in one level before developing against subsequent levels. The state of
an application will determine which upgrades can be done, in what order, and from which category.

NESI Part 3, v2.0, 30 April 2007 page 11

matrix in Section 6, Mapping Maintenance Actions to Enterprise Technology Objectives, to
assess the net-centric enabling accomplishments for this upgrade cycle.

4.3 Level 1: Minimum Upgrade

This level contains the lower-cost, basic upgrades that enable the application to participate in a
net-centric environment. The theme for Level 1 is to prepare the application for migration to the
net-centric environment. It begins by factoring the application into tiers and insulating it from the
enterprise. As part of this preparation, Level 1 recommends a number of self-assessments for
specific technical issues. In addition, performing various configuration and provisioning changes
make the application easier to deploy and support across the enterprise.

The diagram below illustrates the options available for Level 1 upgrades.

ICD

L
eg

ac
y

A
p

p

Message Exchange

Data Exchange

Message Exchange

ICD

Data Exchange

L
eg

ac
y

S
to

re
L

eg
ac

y
B

u
si

n
es

s
L

o
g

ic

Legacy
Viewer

Message Exchange

Message Exchange

ICD

Data Exchange

L
eg

ac
y

S
to

re
L

eg
ac

y
B

u
si

n
es

s
L

o
g

ic

Legacy
Viewer

L
eg

ac
y

S
to

re
L

eg
ac

y
B

u
si

n
es

s
L

o
g

ic

Legacy
Viewer

Message Exchange

Message Exchange

Level 1
Migration

Converting to
N-tier

Figure 2 – Level 1 Migration: Conversion to N-Tier

4.3.1 Overarching
1. Identify additional development efforts for the specific environment, such as IT-21, GCCS,

NMCI, and so on.

2. Develop and publish JUnit7 or automated tests, depending on the implementation language,
for all public APIs.8

3. Assess the level of effort required to refactor the code into at least four tiers: client tier,
presentation tier, middle tier, and data tier.

4. Migrate any operating-system-specific support to an abstraction layer and/or use POSIX9-
compliant operating system (OS) APIs and test on currently supported operating systems and
versions.

5. Develop independent version sequences for the application and the public application
interfaces so that they can vary separately.

7 http://www.junit.org
8 Automated test drivers are available for various languages.
9 Portable Operating System Interface.

NESI Part 3, v2.0, 30 April 2007 page 12

6. Create a configuration file helper class, the mechanisms to interact with the configuration
file, and the configuration file. (This would be deployment descriptors for Web-based
applications or Java EE10 applications, or a name/value-pair plain text configuration file for
other languages. Microsoft applications should migrate off the registry.) Do not necessarily
move all parameters to the configuration file in this iteration; do so where it is reasonable.
This is more of a placeholder mechanism to support subsequent levels.

7. Assess the level of effort required to support enterprise system management. Initially,
applications must be able to send state information periodically or on demand, and receive
commands. Communication occurs via an asynchronous communication mechanism.11
Produce an enterprise management strategy document.12

8. Assess the application for the level of effort required to support availability. Produce an
availability strategy document.

9. Assess the application or program for security. Produce a security policy document.

10. Incorporate a strong password scheme. Passwords should be at least eight characters long and
contain at least one uppercase character, one numerical character, and one special character.

4.3.2 Client and Presentation Tier
1. Factor the GUI code into separable code that can be migrated to client and presentation tiers.

2. Publish and use the public APIs.

3. Prepare existing APIs to migrate to separate tiers: client, presentation, middle, and data.
Refactor existing APIs rather than writing new ones.

4. Decouple the public API from the rest of the application. Use a construct similar to Interfaces
in Java, Abstract, Protocol classes in C++, or a design pattern13 such as façade, proxy,
adapter, or bridge.

5. Comment the API with Javadoc or a tool that produces Javadoc-type output.14

6. Migrate any code that accesses a collaborating system in the client tier to either the middle
tier or the data tier. Wrap that code in a connector construct to isolate the application from
the enterprise.

7. Assess the level of effort required to support portals for applications migrating to the Navy
Enterprise Portal (NEP) or Air Force Portal. Use this to plan development efforts in a
subsequent upgrade level.

8. Migrate client-side security features to middle and data tiers.

9. In Motif/X-window applications, implement a design pattern like façade, bridge, or proxy.
This decouples the Motif from the rest of the application so that it supports service plug-ins.

10 Java Platform, Enterprise Edition.
11 For Navy programs, contact SSC San Diego, Code 24202 for more information.
12 For Navy programs, provide the document to the PEO C4I & Space Technical Director.
13 Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson, Vlissides, 1995,
Addison-Wesley.
14 Javadoc-type tools for other languages are available on the Internet.

NESI Part 3, v2.0, 30 April 2007 page 13

10. Move obvious configuration parameters from this tier to the configuration file.

11. Identify hard-coded constants and parameters that are candidates for external configuration
parameters. Migrate these variables to configuration parameters. Remove hard-coded IP
addresses and URLs.

12. Add pre-condition checks to all public API parameters.15

13. Develop a plan for Discretionary Access Control (DAC) for each Web-accessible component
and for the migration to net-centric access controls such as Role-Based Access Control
(RBAC).

14. Migrate all “magic number” constant values to named constants. In the C++ example below,
the number 6 is a magic number.

4.3.3 Middle Tier
1. Publish and use the public APIs of the middle tier. The client tier uses this API.

2. Comment the API with Javadoc or a tool that produces Javadoc-type output.

3. Decouple the public API from the rest of the application, using a construct similar to
Interfaces in Java or Abstract or Protocol classes in C++. This enables the implementation
interface to vary independently from the part of the interface that is visible to the client.

4. Migrate any code that accesses a collaborating system in the middle tier to a connector
construct. This isolates the application from the enterprise.

5. Develop connectors to the Directory NCES service through an appropriate design pattern.
Implement the application side and incorporate a “Not Implemented” exception on the
enterprise side.

6. Use Secure Sockets Layer (SSL) encryption to pass authentication information.

7. Identify hard-coded constants and parameters that are candidates for external configuration
parameters. Migrate these variables to configuration parameters.

8. Migrate all “magic number” constants to named constants.

9. Add pre-condition checks in all public APIs.

15 An example is the use of Assert() in C++.

//original code
if(numFiles > 6) {
// do something
}
//reworked code
const int MAXFILES = 6;
. . .
if(numFiles > MAXFILES) {
// do something
}

NESI Part 3, v2.0, 30 April 2007 page 14

10. Move configuration parameters from this tier to the configuration file.

11. Migrate client-side security features to the middle tier.

4.3.4 Data Tier
1. Publish and use public APIs. The middle tier uses this API.

2. Comment the API with Javadoc or a tool that produces Javadoc-type output.

3. Migrate any code that accesses a collaborating system in the data tier to a wrapper or
connector construct. This isolates the application from the enterprise.

4. Migrate client-side security features to the data tier.

5. Develop connectors to the Directory NCES service. Implement the application side and
incorporate a “Not Implemented” exception on the enterprise side.

6. Use Secure Sockets Layer (SSL) encryption to pass authentication information.

7. Identify hard-coded constants and parameters that are candidates for external configuration
parameters. Migrate these variables to configuration parameters.

8. Migrate all “magic number” constants to named constants.

9. Add pre-condition checks in all public APIs.

10. Move configuration parameters from this tier to the configuration file.

4.4 Level 2: Mid-Level Upgrade

This level contains medium-cost upgrades that enable the application to participate in a net-
centric environment at a higher level than Level 1 changes. The theme of Level 2 is to connect
factored applications to the Node Platform Infrastructure.16 The adapters connect the public APIs
prepared in Level 1 to the Node Platform interfaces.

The following diagram illustrates the options available for Level 2 upgrades.

16 See NESI Part 4: Node Guidance

NESI Part 3, v2.0, 30 April 2007 page 15

Builds on Level 1 Capabilities

• Do not change legacy viewer,
application, or database

• Develop node interface to legacy
application

• Expose data to network via interface
to legacy store

• Allow users to task legacy
application

• Allow users to receive status
information from legacy application

L
eg

ac
y

S
to

re
L

eg
ac

y
B

u
si

n
es

s
L

og
ic

Legacy
Viewer

Web
Enabled

URL

Resource
Adapter

Resource
Adapter

N
o

d
e

P
la

tf
o

rm

G
IG

 a
n

d
 N

C
E

S

Builds on Level 1 Capabilities

• Do not change legacy viewer,
application, or database

• Develop node interface to legacy
application

• Expose data to network via interface
to legacy store

• Allow users to task legacy
application

• Allow users to receive status
information from legacy application

L
eg

ac
y

S
to

re
L

eg
ac

y
B

u
si

n
es

s
L

og
ic

Legacy
Viewer

L
eg

ac
y

S
to

re
L

eg
ac

y
B

u
si

n
es

s
L

og
ic

Legacy
Viewer

L
eg

ac
y

S
to

re
L

eg
ac

y
B

u
si

n
es

s
L

og
ic

Legacy
Viewer

Web
Enabled

URL

Resource
Adapter

Resource
Adapter

Resource
Adapter

N
o

d
e

P
la

tf
o

rm

G
IG

 a
n

d
 N

C
E

S

N
o

d
e

P
la

tf
o

rm

G
IG

 a
n

d
 N

C
E

S

Figure 3 – Level 2 Migration: Access to Legacy Data and Applications

4.4.1 Overarching
1. Create a commercial “InstallAnywhere” or “InstallShield” installation script. The script must

be executable in multiple runtime environments. If the application resides on a target
platform that this class of tools does not currently support, use another approach in the short
term. In those cases, devise a migration strategy to open-source installation tools.

2. Incorporate XML-supporting infrastructure and administration.17

3. Collaborate with XML Namespace Managers to develop an XML representation for the
application and COI data. Register this information in the DoD Metadata Repository and
Clearinghouse.18 This may affect the package names for class libraries and naming
conventions.

4. Configure the application using an XML-type deployment descriptor model.19

5. If using an XML parser, develop a wrapper class around it. Code the application to that API
to decouple the application from the XML parser.

6. Use validating XML parsers that support the XML schema standard.

7. Develop and publish automated systems integration tests for the entire application.

8. Provide backwards compatibility. Older clients should be able to exchange messages with
newer services to execute older functionality.

17 Federal XML Developer’s Guide, http://xml.gov/documents/in_progress/developersguide.pdf.
18 DoD Metadata Registry and Clearinghouse, http://xml.dod.mil.
19 See the Java EE blueprints for more detail on implementation.

NESI Part 3, v2.0, 30 April 2007 page 16

9. Provide forward compatibility. Newer clients should be able to exchange messages with
older services to execute older functionality.

10. Develop a plan for porting and testing in target operational environments. Include the
upgrades necessary to communicate with supporting system applications.

11. Migrate all environment variables to parameterization variables and store them in property
files, deployment descriptors, or initialization files. For example, Java EE and Web
applications use deployment descriptors.

12. Finish migrating configuration parameters to the external configuration file.

13. Identify proprietary GOTS20 and COTS21 code and decouple it via wrapper classes. Design
the wrapper classes.

14. Analyze functional areas of the application that will interface to the enterprise.22

15. Modify application structure to isolate change between the client tier and middle tier, per
Level 1 assessment. Enable developers to modify and enhance discrete portions of the
enterprise without affecting the others.

16. Develop connectors to the enterprise management service. Implement the application side
and incorporate a “Not Implemented” exception on the enterprise side. At this level,
incorporate self-diagnostics, enterprise management reports, and on/off functionality.23

4.4.2 Client and Presentation Tier
1. Migrate any programmatic security implementations to a container-managed security model.

Do not use basic authentication for Web-based applications.

2. Transform Windows-based applications to be Windows Logo-compliant.

3. Implement COE decoupling components specific to this tier.24

4. Develop portal support for applications migrating to the Navy Enterprise Portal (NEP) or Air
Force Portal, based on earlier assessments. Base migration to the GIG Portal on JSR 168 for
Java-based portlets.

5. For Motif/X-window applications, implement a design pattern like façade, bridge, or proxy.
This decouples the Motif from the rest of the application in order to support service plug-ins
per Level 1 assessments.

4.4.3 Middle Tier
1. Develop connectors to the Messaging NCES service. Implement the application side and

incorporate a “Not Implemented” exception on the enterprise side.

20 Government off-the-shelf.
21 Commercial off-the-shelf.
22 Example: include user management and authentication.
23 Consider Java-based JMX technologies. See http://java.sun.com/products/JavaManagement.
24 The high-level COE migration strategy is outlined in section 5, Migrating COE Systems and Applications.

NESI Part 3, v2.0, 30 April 2007 page 17

2. Develop connectors to the IA/Security enterprise service. Implement the application side and
incorporate a “Not Implemented” exception on the enterprise side.

3. Develop connectors to the Discovery NCES service. Implement the application side and
incorporate a “Not Implemented” exception on the enterprise side.

4. Develop connectors to the Net Time enterprise service. Implement the application side and
incorporate a “Not Implemented” exception on the enterprise side.

5. Develop connectors to the Network Management enterprise service. Implement the
application side and incorporate a “Not Implemented” exception on the enterprise side.

6. Develop connectors to an external directory service for authentication. Implement the
application side and incorporate a “Not Implemented” exception on the enterprise side. Some
application servers have a realm database as part of the application server. This realm
database must be “pluggable” to support the use of other directory servers.

7. Migrate any programmatic security implementations to a container-managed security model.
Do not use basic authentication for Web-based applications.

8. For Java applications, develop Discretionary Access Control (DAC) based on container-
managed security and the enterprise connector frameworks. Isolate the access control for
migration to net-centric Role-Based Access Control (RBAC) authorization services.

9. For C, C++, and ADA applications, develop Discretionary Access Control (DAC) based on a
container-managed security model using the Lightweight Directory Access Protocol (LDAP).
Isolate the access control for migration to net-centric RBAC authorization services.

10. Migrate from raw sockets and primitive connection APIs to an abstraction layer.

11. Implement container-managed transactions and a concurrency control model.

12. Implement COE decoupling components specific to this tier.

13. Implement application integration and backend integration with initial collaborators.

4.4.4 Data Tier
1. Collaborate with Data Area Managers to develop a strategy to incorporate enterprise data

policies. Identify, catalog, and report Data Area Manager requirements including data
formats, database and versions, authoritative data sources, stored procedures and triggers,
and data latency and integrity issues.

2. Coordinate shared resources with collaborators.

3. Implement COE decoupling components specific to this tier.

4. Implement container-managed transactions and a concurrency control model.

5. Create backwardly compatible data mappings for messages.

6. Remove global accounts from databases and integrate them into authentication/access control
components.

7. Implement a data integrity scheme for ensuring correct data management when the database
is accessed from multiple locations.

8. Implement application integration and backend integration with initial collaborators.

NESI Part 3, v2.0, 30 April 2007 page 18

9. Create and publish content metadata in accordance with the guidance from the DoD
Metadata Registry and Clearinghouse.25

10. Isolate the application’s data tier from the rest of the application with an open-standards CLI
interface layer like ODBC, JDBC, a RogueWave-like layer, or an equivalent abstraction.

11. For database applications, migrate from proprietary SQL to ANSI STD SQL 92 or ANSI
STD 99, depending on the database. If the application may lose functionality by migrating
off proprietary SQL, use an alternative approach. For data stream applications, develop a
wrapper abstraction layer that insulates proprietary protocols from the rest of the application.

12. Define the multinational sharing requirements for the data that the service will create and
use.

4.5 Level 3: Net-Centric Upgrade

This level contains the higher-cost upgrades that enable the application to participate fully in a
net-centric environment. The theme for Level 3 is to migrate the refactored application code to
the Node Platform Infrastructure and prepare the application for the net-centric enterprise
environment (e.g., namespaces, XML, metadata, publish-subscribe interfaces).

The diagram below illustrates the options available for Level 3 upgrades.

R
e-

fa
ct

o
re

d
N

-T
ie

r
A

p
p

Builds on Level 2 Capabilities

• Rewrite parts (or all) of legacy
application as N-tier application
(J2EE or .NET)

• Make application part of node
workflow

• Access application information via
URL or through web portal using a
browser

• Allow publish and subscribe with
web alerts

L
eg

ac
y

S
to

re

Web
Viewer

Resource
Adapter

Resource
Adapter

N
o

d
e

P
la

tf
o

rm

G
IG

 a
n

d
 N

C
E

S

Figure 4 – Level 3 Migration: Transform Legacy Applications

25 DoD Metadata Registry and Clearinghouse, http://metadata.dod.mil.

NESI Part 3, v2.0, 30 April 2007 page 19

4.5.1 Overarching
1. Develop a remote administration/management model that includes frameworks and

connectors for remote monitoring, server resource management, and remote software
upgrades and maintenance.26

2. Develop remote policies for administrators, operators, and developers.

3. Develop remote installation procedures for components and applications.

4. Implement enterprise authentication and single sign-on, using the connectors developed
earlier to facilitate access to data and logic. Use XML-based security assertions to pass
authentication information.

5. Integrate application components with the enterprise namespace strategy.

6. Implement return-code-to-exception mapping for applications that use return codes.

7. Place exceptions in the public API descriptions.

8. Develop non-real-time to real-time bridge designs with collaborators.

9. Implement initial implementation of enterprise data policies.

10. Test the application on target operating systems in current and planned operational
environments. Include all supporting system applications.

11. Test the application on middleware, including application servers and object request brokers
(ORBs), in current and planned operational environments. Include all supporting system
application interactions.

12. Develop and publish automated acceptance tests for the entire application.

13. Develop proprietary GOTS and COTS wrapper classes and integrate them into the
application.

14. Modify the application structure to isolate change between the middle tier and data tier, per
Level 1 assessments. Enable developers to modify and enhance discrete portions of the
enterprise without affecting the others.

15. Implement consistent XML data formats, services such as WSDL, and protocols such as
SOAP to support data and service exchange across distributed nodes.

16. Assess data for integration with COI or enterprise language and ontologies (e.g., C2IEDM).

17. Implement the enterprise management connector back ends. Integrate with the enterprise
management service for on/off, heartbeat, and reports.

4.5.2 Client and Presentation Tier
1. Migrate decoupled clients to Web-page or decoupled-thick-client GUIs. Be able to download

them independently from the application. The client module must be able to communicate
with the presentation tier on the server via SSL.

2. Restructure the source code to use the enterprise namespace strategy.

26 Software must be able to be installed over the network.

NESI Part 3, v2.0, 30 April 2007 page 20

3. Implement application integration and backend integration with more collaborators.

4. Implement return-code-to-exception mapping.

5. Begin implementing enterprise data policies.

6. Develop and publish automated acceptance tests.

7. Develop the enterprise interface connectors and integrate them into the application.

4.5.3 Middle Tier
1. Develop a non-repudiation scheme for application service-to-service interactions.

2. Implement a services-based access model for business logic and data, with support for legacy
in/out messages. Exchange node-to-node information through services in the middle tier.

3. Migrate the business logic from the data tier and client tier into the middle tier. Some of the
business logic may be contained in the database and not affect the risk strategy.

4. Implement return-code-to-exception mapping.

5. Integrate the application namespace with the enterprise namespace strategy.

6. Implement application integration and backend integration with more collaborators.

7. Begin implementing enterprise data policies.

8. Develop and publish automated acceptance tests.

4.5.4 Data Tier
1. Migrate data tier items from the client and middle tiers into the data tier.

2. Implement return-code-to-exception mapping.

3. Implement a services-based data access model with support for legacy in/out messages.

4. Implement an application collaboration and mediation framework.

5. Incorporate XML-supporting infrastructure and administration.

6. Integrate the application namespace with the enterprise namespace strategy.

7. Implement application integration and backend integration with more collaborators.

8. Begin implementing enterprise data policies.

9. Develop and publish automated acceptance tests.

10. For raw byte-stream data applications and sensors, create an object-oriented wrapper
abstraction layer.

4.6 Level 4: Full Net-Centric Integration

Migrating legacy applications to a net-centric environment after Level 3 will require major
development efforts.27 The theme of this level is to take a factored, tiered application and provide

27 See NESI Part 1: Overview and NESI Part 2: ASD(NII) Checklist Guidance

NESI Part 3, v2.0, 30 April 2007 page 21

implementation-independent (e.g., XML-based) information exchange, new services for other
nodes, and the ability to consume services provided by other nodes.

The diagram below illustrates the options available for upgrades beyond Level 3.
N

ew
 S

to
re

N
at

iv
e

A
p

p

Builds on Level 3

• Use web technologies to create a service
based architecture

• Replace legacy viewers, applications and
databases with homogeneous SOA and
data strategy

• Develop new applications to run in
homogeneous node environment.

• Access applications via the web portal and
the web services

• Interface to full enterprise workflow and
collaboration environment

• Make web services available to external
systems for machine-to-machine data and
application exchanges

Web
Viewer

N
o

d
e

P
la

tf
o

rm

G
IG

 a
n

d
 N

C
E

S
G

IG
 a

n
d

 N
C

E
S

G
IG

 a
n

d
 N

C
E

S

Figure 5 – Level 4: Full Net-Centric Integration

4.6.1 Overarching
1. For applications using RDBMS replication, develop an RDBMS replication strategy to

migrate to third-party replication providers and decouple from proprietary replication
engines. The replication technology must support replication across vendor databases and
versions.

2. Develop an application lifecycle framework that shows how the application interacts with the
enterprise.

3. Implement or interface to enterprise caching and communications servers.

4. Implement a cross-domain solution or use CDS enterprise services.

5. Develop a strategy to emulate or gateway legacy networks so that all users are perceived as
IP nodes on a larger network.

6. Implement a non-real-time to real-time bridge with collaborators.

7. Implement XML-supporting infrastructure and administration for the enterprise.

8. Implement remote installation of components and applications.

9. Implement availability- and fault-tolerant services.

10. Implement load balancing.

NESI Part 3, v2.0, 30 April 2007 page 22

11. Implement database integration.

12. Implement connectors to information management components to include the following:

 Indexing – content metadata

 Searching – to parse indexed material

 Preferences/customization/personalization

 Profiling

13. Develop interfaces and connectors to Content Delivery Network collaborators.

14. Develop interfaces and connectors to Intelligent Agents.

15. Develop interfaces and connectors to a Profile Management system.

16. Develop interfaces and connectors to a Workflow Management system.

17. Develop interfaces and connectors to a Process Management system.

18. Develop interfaces and connectors to Local Management subsystems.

19. Support strong authentication techniques using centralized authentication servers.

NESI Part 3, v2.0, 30 April 2007 page 23

5 Migrating COE Systems and Applications
As the DoD moves toward net-centricity, systems and applications may migrate away from the
Common Operating Environment (COE). Migrating COE systems to a net-centric infrastructure
requires analyzing the system’s dependencies on the COE. Some systems are built to run on the
COE without major dependencies; others use complex COE-based functionality. The guidance
NESI provides on developing net-centric systems will help bridge the gap.

5.1 Selecting an Approach

COE applications will migrate in phases and at various levels of decoupling. The spectrum of
legacy integration and transition possibilities requires multiple integration approaches. A
customized approach should mitigate the level of risk and leverage maintenance dollars.

The best approach for a given system depends on two major factors:

 Will the system have different users, requirements, and interfaces than it does now? If so,
more flexibility and resources may be needed for the transition.

 What level of COE integration does the system have, how is the implementation
achieved, what COE components does the system use, and are there plans for developing
non-COE versions of those components?

COE components include workstation and user interface facilities, message processing facilities,
and mechanisms for software builds and configuration management.

As the net-centric environment expands, COE functionality will be iteratively replaced by
services. Over time, fewer and fewer applications will rely on the COE.

5.2 Analyzing COE Capabilities

The COE provides a number of basic, DISA-provided capabilities, listed below. Use these as the
starting point for mapping and transitioning COE capabilities to net-centric, open-standards
capabilities.

 An operating system environment

 A GOTS COE kernel that includes the following:

 A packaging and installation technology, COE segmentation, and the COE Installer

 Security templates for Discretionary Access Control

 Account Manager

 Profile Manager

 Auditing

 Process management

 Platform configuration management

NESI Part 3, v2.0, 30 April 2007 page 24

The COE also offers a number of COTS and GOTS products for applications. The migration
strategy should consider the number and level of dependencies on GOTS components that are
not available outside the COE environment. The major COE GOTS components of interest
follow:

 Alerts Services

 Joint Mapping Tool Kit (JMTK)

 Common Message Processor (CMP)

 Integrated C4I System Framework (ICSF)

Each of these products requires a particular migration strategy.

5.3 Decision Tree

Use the following decision tree to determine the best migration option for each COE capability.

1. If your system currently supports multiple environments, and you choose to continue multi-
OS (heterogeneous) support, you should provide some form of common interface similar to
the COE interface. You can:

 Build your own version of that capability.

 Port forward the existing COE implementation.

 Buy a commercial product to accomplish the same function and migrate your system to
that product.

2. If your system currently supports multiple environments, and you choose to support only a
single environment, you can:

 Buy and use the commercial solution set for that environment (e.g., the Navy’s NMCI
approach).

 Build an abstraction layer above that environment to isolate your system. Towards this
end, you can either:

 Build your own version of that capability.

 Port forward the existing COE implementation.

 Buy a commercial product to accomplish the same function and migrate your system
to that product.

3. If your system currently supports multiple environments, and you choose to implement
multiple solutions, one per environment, these solutions will not be interoperable. For each
environment, you can:

 Buy and use the commercial solution set for that environment.

 Build an abstraction layer above that environment to isolate your system. You can either:

 Build your own version of that capability.

 Port forward the existing COE implementation.

NESI Part 3, v2.0, 30 April 2007 page 25

 Buy a commercial product to accomplish the same function and migrate your system
to that product.

5.4 Examples of Mixed COE/Non-COE Systems

For insight into COE migration techniques, examine systems that have developed or are
developing mixed COE/non-COE systems:

 I3 integration framework developers toolkit28

 Joint Enterprise DoDIIS Infrastructure (JEDI)29

 eXtensible Tactical C4I Framework (XTCF)30

5.5 Migrating Systems with Basic COE Dependency

Systems with a basic COE dependency only rely on the COE installer and the GOTS COE
kernel. The migration strategy in this case is relatively straightforward.

1. Identify the standard COTS components used (e.g., RDBMS) and provide for non-COE
versions. These may be provided by the system or by the node on which the system runs.

2. Remove any COE segmentation and COE installer components. Use tools such as
MakeInstall and UnMakeInstall to make the system a segment or not a segment, as
appropriate.

3. For GOTS, develop an installation procedure using commercial installation technology (e.g.,
InstallShield for Windows, InstallAnywhere for multiple platforms).

4. Implement Logo compliance on Windows.

5. Implement Appcert compliance on Solaris.

6. Reserve and deconflict machine resources, file system conventions, environment variables,
and port numbers.

7. Use only published APIs for the OS.

8. Provide for user and group account management. Set file and directory permissions and
password management.

9. Provide process management configuration rules such as what processes run and when. Note
that COE-specific process management differs from what the target environment provides.

10. After migration, if the system will provide its own OS and hardware, use the NSA-developed
COE security lockdown directions to develop an equivalent security lockdown procedure as
part of installation. The general approach is to lock down everything and document those
functions that need to be unlocked.

28 Contact the GCCS-M Program Management Office.
29 Contact the JEDI Program Management Office, AFRL/IFEB, http://extranet.if.afrl.af.mil/jedi/ or
mailto:jedi@rl.af.mil.
30 Contact the XTCF Program Management Office.

NESI Part 3, v2.0, 30 April 2007 page 26

11. After migration, if the system will be hosted on another system, develop the security
configuration required for proper operation in that environment (e.g., which ports must be
open).

5.6 Migrating Systems with COE Component Dependencies

Review the COE components in this section and identify the ones on which the system depends.
Develop a specific migration strategy for each one. Each section below makes suggestions that
can serve as a starting point. Specific requirements determine the most cost-effective approach.

Some components require multiple migration steps. Others require interim development tactics
such as COE to non-COE bridge segments. There may be alternatives to the suggested strategies
for some components.

5.6.1 COE Alerts Dependency
 Investigate alternate NCES, OS, or node alert/notification/messaging processing.

5.6.2 COE APM/CDS Dependency
 Provide APM/CDS as a plug-in (subset appropriate to application usage).

 Replace individual invocations with alternate NCES, OS, or node service calls.

5.6.3 COE JMTK31 Dependency
 Port any needed JMTK to a non-COE environment. There are several ongoing activities

to get off the JMTK.

 Investigate porting the system to use C/JMTK32 or alternate mapping packages such as an
OGC-visualization-independent layer.

5.6.4 COE CMP Dependency
 Investigate IRIS.33

 Investigate a CMP migration strategy.

5.6.5 COE ICSF Dependency
 Include the TMS (CST, etc.), UCP (netproc, etc.), and JMTK subcomponents. This is

typically a complex effort.

 Analyze any other ICSF-specific applications that are used.

 Investigate ongoing Web-enabling efforts such as WebCOP.

 Investigate the DISA-sponsored User Defined Operation Picture (UDOP) program.

31 See http://www.jmtk.org for details on JMTK.
32 See http://www.cjmtk.com for details on C/JMTK.
33 See http://www.sseusa.com for details on IRIS.

NESI Part 3, v2.0, 30 April 2007 page 27

5.7 Migrating COE Components Using a Bridge Approach

For many COE components, a bridge design pattern34 approach may be appropriate.

In the bridge approach, COE capabilities continue to exist. A new companion segment, called a
bridge segment, is installed on the COE system. This segment provides an interface by which
net-centric systems can access the COE-based functionality. It also provides net-centric services
that make the component functionality available on the network. New, non-COE applications
invoke the bridge segment services to access the underlying COE-based functionality.

Depending on the number of public APIs that have to be rewritten, this interim strategy may be
more cost-effective than strategies such as wholesale segment conversion. The following
diagrams illustrate the bridge approach.

Segment A Segment B Segment C

COE CORE

Application Q Seg B
Bridge

Seg C
Bridge

Component A Component B Component C

COE Kernel

Application Q

Segment A Segment B Segment C

COE CORE

Application Q Seg B
Bridge

Seg C
Bridge

Component A Component B Component C

COE Kernel

Application Q

Figure 6 – Notional COE-Based System

Segment A Segment B Segment C

COE CORE

Application Q Seg B
Bridge Non-COE net-centric

systems on the net.

Network

Seg C
Bridge

Component A Component B Component C

COE Kernel

Application Q Bridge B Non-COE net-centric
systems on the net.
Non-COE net-centric
systems on the net.

Network

Segment A Segment B Segment C

COE CORE

Application Q Seg B
Bridge Non-COE net-centric

systems on the net.

Network

Seg C
Bridge

Component A Component B Component C

COE Kernel

Application Q Bridge B Non-COE net-centric
systems on the net.
Non-COE net-centric
systems on the net.

Network

Figure 7 – Notional COE Component Hybrid Bridge Configuration

34 Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson, Vlissides, 1995,
Addison-Wesley.

NESI Part 3, v2.0, 30 April 2007 page 28

Segment A Segment B Segment C

COE CORE

Non-COE net-centric
systems on the net.

Component A Component B Component C

COE Kernel

Non-COE
Application Q’

Bridge A & B Non-COE net-centric
systems on the net.
Non-COE net-centric
systems on the net.

Network

Segment A Segment B Segment C

COE CORE

Non-COE net-centric
systems on the net.

Component A Component B Component C

COE Kernel

Non-COE
Application Q’

Bridge A & B Non-COE net-centric
systems on the net.
Non-COE net-centric
systems on the net.

Network

Figure 8 – Notional COE Application Hybrid Bridge Configuration

NESI Part 3, v2.0, 30 April 2007 page 29

6 Mapping Maintenance Actions to Enterprise Technology
Objectives

This section maps the maintenance actions identified above to the eight enterprise technology objectives included in Table 2, NESI
Part 1: Overview. The table below illustrates how the levels of integration shown above flow into each other and support the flow
among maintenance actions.

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

Level 1 Overarching

1

Identify additional
development efforts for the
specific environment, such
as IT-21, GCCS, NMCI, and
so on.

X X X X X X X X

2

Develop and publish JUnit or
automated tests, depending
on the implementation
language, for all public APIs.

X X X X

3

Assess the level of effort
required to refactor the code
into at least four tiers: client
tier, presentation tier, middle
tier, and data tier.

X X X

NESI Part 3, v2.0, 30 April 2007 page 30

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

4

Migrate any operating-
system-specific support to
an abstraction layer and/or
use POSIX-compliant OS
APIs and test on currently
supported operating
systems and versions.

X X X X

5

Develop independent
versioning for the application
and the public application
interfaces so that they can
vary separately.

X X X X

6

Create a configuration file
helper class, the
mechanisms to interact with
the configuration file, and
the configuration file.

X X X X

7

Assess the level of effort
required to support
enterprise system
management.

X X X X X

8
Assess the application for
the level of effort required to
support availability.

X X X X X X

9

Assess the application or
program for security.
Produce a security policy
document.

X X X X X

NESI Part 3, v2.0, 30 April 2007 page 31

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

10 Incorporate a strong
password scheme.

X X X X X

Level 1 Client/Presentation Tier

1

Factor the GUI code into
separable code that can be
migrated to client and
presentation tiers

X X X

2
Publish and use the public
APIs

X X X X X X

3

Prepare existing APIs to
migrate to separate tiers:
client, presentation, middle,
and data.

X X X X X X

4

Decouple the public API
from the rest of the
application. Use a construct
similar to Interfaces in Java,
Abstract or Protocol classes
in C++, or a design pattern
such as façade, proxy,
adapter, or bridge.

X X X X

5

Comment the API with
Javadoc or a tool that
produces Javadoc-type
output.

X X X X X

NESI Part 3, v2.0, 30 April 2007 page 32

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

6

Migrate any code that
accesses a collaborating
system in the client tier to
either the middle tier or the
data tier. Wrap that code in
a connector construct to
isolate the application from
the enterprise.

X X X X

7

Assess the level of effort
required to support portals
for applications migrating to
the Navy Enterprise Portal
(NEP) or Air Force Portal.
Use this to plan
development efforts in a
subsequent upgrade level.

X X X

8
Migrate client-side security
features to middle and data
tiers.

X X X X X

9

In Motif/X-window
applications, implement a
design pattern like façade,
bridge, or proxy. This
decouples the Motif from the
rest of the application so that
it supports service plug-ins.

X X X X

10
Move obvious configuration
parameters from this tier to
the configuration file.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 33

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

11

Identify hard-coded
constants and parameters
that are candidates for
external configuration
parameters. Migrate these
variables to configuration
parameters. Remove hard-
coded IP addresses and
URLs.

X X X X

12
Add pre-condition checks to
all public API parameters. X X X X X X

13

Develop a plan for
Discretionary Access
Control (DAC) for each
Web-accessible component
and for the migration to net-
centric access controls such
as RBAC.

X X X X X

14
Migrate all “magic number”
constant values to constant
variables.

 X X X

Level 1 Middle Tier

1
Publish and use the public
APIs of the middle tier.

X X X X

2

Comment the API with
Javadoc or a tool that
produces Javadoc-type
output.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 34

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

3

Decouple the public API
from the rest of the
application, using a
construct similar to
Interfaces in Java or
Abstract or Protocol classes
in C++.

X X X X

4

Migrate any code that
accesses a collaborating
system in the middle tier to a
connector construct.

X X X X X

5

Develop connectors to the
Directory NCES service
through an appropriate
design pattern. Implement
the application side and
incorporate a “Not
Implemented” exception on
the enterprise side.

X X X X

6
Use SSL encryption to pass
authentication information.

X X X X X

7

Identify hard-coded
constants and parameters
that are candidates for
external configuration
parameters. Migrate these
variables to configuration
parameters.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 35

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

8
Migrate all “magic number”
constants to constant
variables.

 X X X

9
Add pre-condition checks in
all public APIs. X X X X X X

10
Move configuration
parameters from this tier to
the configuration file.

X X X X

11
Migrate client-side security
features to the middle tier.

X X X X X

Level 1 Data Tier

1 Publish and use public APIs. X X X X

2

Comment the API with
Javadoc or a tool that
produces Javadoc-type
output.

X X X X

3

Migrate any code that
accesses a collaborating
system in the data tier to a
wrapper or connector
construct.

X X X X

4
Migrate client-side security
features to the data tier. X X X X X

NESI Part 3, v2.0, 30 April 2007 page 36

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

5

Develop connectors to the
Directory NCES service.
Implement the application
side and incorporate a “Not
Implemented” exception on
the enterprise side.

X X X

6
Use SSL encryption to pass
authentication information.

X X X X X

7

Identify hard-coded
constants and parameters
that are candidates for
external configuration
parameters. Migrate these
variables to configuration
parameters.

X X X X

8
Migrate all “magic number”
constants to constant
variables.

 X X X

9
Add pre-condition checks in
all public APIs.

X X X X X X

10
Move configuration
parameters from this tier to
the configuration file.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 37

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

Level 2 Overarching

1

Create a commercial
“InstallAnywhere” or
“InstallShield” installation
script.

X X X

2
Incorporate XML-supporting
infrastructure and
administration.

X X X X

3

Collaborate with XML
Namespace Managers to
develop an XML
representation for the
application and COI data.

X X X X

4

Configure the application
using an XML-type
deployment descriptor
model.

X X X X

5

If using an XML parser,
develop a wrapper class
around it. Code the
application to that API to
decouple the application
from the XML parser.

X X X X

6
Use validating XML parsers
that support the XML
schema standard.

X X X X X

NESI Part 3, v2.0, 30 April 2007 page 38

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

7

Develop and publish
automated systems
integration tests for the
entire application.

X X X X

8
Provide backwards
compatibility.

X X X X X

9
Provide forward
compatibility.

X X X X X

10

Develop a plan for porting
and testing in target
operational environments.
Include the upgrades
necessary to communicate
with supporting system
applications.

X X X X

11

Migrate all environment
variables to
parameterization variables
and store them in property
files, deployment
descriptors, or initialization
files.

X X X X

12

Finish migrating
configuration parameters to
the external configuration
file.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 39

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

13

Identify proprietary GOTS
and COTS code and
decouple it via wrapper
classes. Design the wrapper
classes.

X X X X

14
Analyze functional areas of
the application that will
interface to the enterprise.

X X X X

15

Modify application structure
to isolate change between
the client tier and middle tier,
per Level 1 assessment.

X X X X

16

Develop connectors to the
enterprise management
service. Implement the
application side and
incorporate a “Not
Implemented” exception on
the enterprise side. At this
level, incorporate self-
diagnostics, enterprise
management reports, and
on/off functionality.

X X X X X

NESI Part 3, v2.0, 30 April 2007 page 40

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

Level 2 Client and Presentation Tiers

1

Migrate any programmatic
security implementations to
a container-managed
security model. Do not use
basic authentication for
Web-based applications.

X X X X X

2
Transform Windows-based
applications to be Windows
Logo-compliant.

X X X X

3
Implement COE decoupling
components specific to this
tier.

X X X X X X

4

Develop portal support for
applications migrating to the
Navy Enterprise Portal
(NEP) or Air Force Portal,
based on earlier
assessments. Base
migration to the GIG Portal
on JSR 168 for Java-based
portlets.

 X X X

5

For Motif/X-window
applications, implement a
design pattern like façade,
bridge, or proxy.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 41

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

Level 2 Middle Tier

1

Develop connectors to the
Messaging NCES service.
Implement the application
side and incorporate a “Not
Implemented” exception on
the enterprise side.

X X X X X X X

2
Develop connectors to the
Audit NCES Services.

X X X X X X X X

3

Develop connectors to the
Discovery NCES service.
Implement the application
side and incorporate a “Not
Implemented” exception on
the enterprise side.

X X X X X

4

Develop connectors to the
Net Time enterprise
services. Implement the
application side and
incorporate a “Not
Implemented” exception on
the enterprise side.

X X X X

5

Develop connectors to the
Network Management
enterprise service.
Implement the application
side and incorporate a “Not
Implemented” exception on
the enterprise side.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 42

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

6

Develop connectors to an
external directory service for
authentication. Implement
the application side and
incorporate a “Not
Implemented” exception on
the enterprise side. Some
application servers have a
realm database as part of
the application server. This
realm database must be
“pluggable” to support the
use of other directory
servers.

X X X X X

7

Migrate any programmatic
security implementations to
a container-managed
security model. Do not use
basic authentication for
Web-based applications.

X X X X X

8

For Java applications,
develop Discretionary
Access Control based on
container-managed security
and the enterprise connector
frameworks. Isolate the
access control for migration
to net-centric RBAC
authorization services.

X X X X X X

NESI Part 3, v2.0, 30 April 2007 page 43

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

9

For C, C++, and ADA
applications, develop
Discretionary Access
Control based on a
container-managed security
model using LDAP. Isolate
the access control for
migration to net-centric
RBAC authorization
services.

X X X X X X

10
Migrate from raw sockets
and primitive connection
APIs to an abstraction layer.

X X X X

11
Implement container-
managed transactions and a
concurrency control model.

X X X X X

12
Implement COE decoupling
components specific to this
tier.

X X X X X X

13

Implement application
integration and backend
integration with initial
collaborators.

X X X X

Level 2 Data Tier

1

Collaborate with Data Area
Managers to develop a
strategy to incorporate
enterprise data policies.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 44

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

2 Coordinate shared
resources with collaborators.

X X X X X

3
Implement COE decoupling
components specific to this
tier.

X X X X X X

4
Implement container-
managed transactions and a
concurrency control model.

X X X X X X X

5
Create backwardly
compatible data mappings
for messages.

X X X X X X

6

Remove global accounts
from databases and
integrate them into
authentication/ access
control components.

X X X X X X

7

Implement a data integrity
scheme for ensuring correct
data management when the
database is accessed from
multiple locations.

X X X X X X

8

Implement application
integration and backend
integration with initial
collaborators.

X X X X X X

NESI Part 3, v2.0, 30 April 2007 page 45

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

9

Create and publish content
metadata in accordance with
the guidance from the DoD
Metadata Registry and
Clearinghouse.

X X X X X

10

Isolate the application’s data
tier from the rest of the
application with an open-
standards CLI interface layer
like ODBC, JDBC, a
RogueWave-like layer, or an
equivalent abstraction.

X X X X

11

For database applications,
migrate from proprietary
SQL to ANSI STD SQL 92
or ANSI STD 99, depending
on the database.

X X X X

12

Define the multinational
sharing requirements for the
data that the service will
create and use.

X X

NESI Part 3, v2.0, 30 April 2007 page 46

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

Level 3 Overarching

1

Develop a remote
administration/management
model that includes
frameworks and connectors
for remote monitoring,
server resource
management, and remote
software upgrades and
maintenance.

X X X

2
Develop remote policies for
administrators, operators,
and developers.

X X X X X X

3
Develop remote installation
procedures for components
and applications.

X X X X

4

Implement enterprise
authentication and single
sign-on, using the
connectors developed
earlier to facilitate access to
data and logic. Use XML-
based security assertions to
pass authentication
information.

X X X X X X

5

Integrate application
components with the
enterprise namespace
strategy.

X X X X X

NESI Part 3, v2.0, 30 April 2007 page 47

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

6

Implement return-code-to-
exception mapping for
applications that use return
codes.

X X X X X X

7
Place exceptions in the
public API descriptions.

 X X

8
Develop non-real-time to
real-time bridge designs with
collaborators.

X X X X

9
Implement initial
implementation of enterprise
data policies.

X X X X X

10

Test the application on
target operating systems in
current and planned
operational environments.
Include all supporting
system applications.

X X X

11

Test the application on
middleware, including
application servers and
ORBs, in your current and
planned operational
environments. Include all
supporting system
application interactions.

X X X

NESI Part 3, v2.0, 30 April 2007 page 48

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

12
Develop and publish
automated acceptance tests
for the entire application.

X X X

13

Develop proprietary GOTS
and COTS wrapper classes
and integrate them into the
application.

X X X X

14

Modify the application
structure to isolate change
between the middle tier and
data tier, per Level 1
assessments.

X X X X

15

Implement consistent XML
data formats, services such
as WSDL, and protocols
such as SOAP to support
data and service exchange
across distributed nodes.

X X X X X

16

Assess data for integration
with COI or enterprise
language and ontologies
(e.g., C2IEDM).

X X X X X

17

Implement the enterprise
management connector
back ends. Integrate with the
enterprise management
service for on/off, heartbeat,
and reports.

X X X X X

NESI Part 3, v2.0, 30 April 2007 page 49

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

Level 3 Client and Presentation Tiers

1

Migrate decoupled clients to
Web-page or decoupled-
thick-client GUIs. Be able to
download them
independently from the
application. The client
module must be able to
communicate with the
presentation tier on the
server via SSL.

X X X

2
Restructure the source code
to use the enterprise
namespace strategy.

X X X X

3

Implement application
integration and backend
integration with more
collaborators.

X X X X

4
Implement return-code-to-
exception mapping.

X X X X X X

5
Begin implementing
enterprise data policies.

X X X X X

6
Develop and publish
automated acceptance tests.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 50

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

7

Develop the enterprise
interface connectors and
integrate them into the
application.

X X X X X X

Level 3 Middle Tier

1

Develop a non-repudiation
scheme for application
service-to-service
interactions.

X X X X

2

Implement a services-based
access model for business
logic and data, with support
for legacy in/out messages.
Exchange node-to-node
information through services
in the middle tier.

X X X X X

3
Migrate the business logic
from the data tier and client
tier into the middle tier.

X X X X

4
Implement return-code-to-
exception mapping.

X X X X X X

5

Integrate the application
namespace with the
enterprise namespace
strategy.

X X X X

NESI Part 3, v2.0, 30 April 2007 page 51

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

6

Implement application
integration and backend
integration with more
collaborators.

X X X X

7
Begin implementing
enterprise data policies.

X X X X X

8
Develop and publish
automated acceptance tests.

X X X X

Level 3 Data Tier

1
Migrate data tier items from
the client and middle tiers
into the data tier.

 X X

2
Implement return-code-to-
exception mapping.

X X X X X X

3

Implement a services-based
data access model with
support for legacy in/out
messages.

X X X X X

4
Implement an application
collaboration and mediation
framework.

X X X X X

5
Incorporate XML-supporting
infrastructure and
administration.

X X X X X X X X

NESI Part 3, v2.0, 30 April 2007 page 52

Maintenance Action Options
Capability

On
Demand

Distributed
Operations

Customized
Applications

Multi-
User

Access

Customized
Delivery

Assured
Sharing

Incremental
Upgrade

Data
Exchange

6

Integrate the application
namespace with the
enterprise namespace
strategy.

X X X X X X X

7

Implement application
integration and backend
integration with more
collaborators.

X X X X X

8
Begin implementing
enterprise data policies.

X X X X

9
Develop and publish
automated acceptance tests.

X X X X

10

For raw byte-stream data
applications and sensors,
create an object-oriented
wrapper abstraction layer.

X X X X X

	NESI Implementation
	References
	Overview
	Releasability statement
	Vendor Neutrality
	Disclaimer
	Contributions and Comments
	Collaboration Site

	Introduction
	Audience

	Migrating to a Net-Centric Warfare Environment
	ASD(NII)/DoD CIO Categories
	Non-Compliant (Retire)
	Legacy Being Sustained (Retain)
	Legacy Being Transformed (Refresh)
	New Start / In Development

	NESI Migration Levels

	Selecting a Migration Level
	Assessing Risk
	Client and Presentation Tiers
	Middle Tier
	Data Tier
	Multi-User Applications
	Cross-Domain Security (CDS)

	Assessing Scope
	Level 1: Minimum Upgrade
	Overarching
	Client and Presentation Tier
	Middle Tier
	Data Tier

	Level 2: Mid-Level Upgrade
	Overarching
	Client and Presentation Tier
	Middle Tier
	Data Tier

	Level 3: Net-Centric Upgrade
	Overarching
	Client and Presentation Tier
	Middle Tier
	Data Tier

	Level 4: Full Net-Centric Integration
	Overarching

	Migrating COE Systems and Applications
	Selecting an Approach
	Analyzing COE Capabilities
	Decision Tree
	Examples of Mixed COE/Non-COE Systems
	Migrating Systems with Basic COE Dependency
	Migrating Systems with COE Component Dependencies
	COE Alerts Dependency
	COE APM/CDS Dependency
	COE JMTK� Dependency
	COE CMP Dependency
	COE ICSF Dependency

	Migrating COE Components Using a Bridge Approach

	Mapping Maintenance Actions to Enterprise Technology Objectives

